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1. Introduction

This report provides all of the necessary details of the analysis of dipole antennas printed on
grounded magnetodielectric substrates. Since the sources considered are essentially impulses,
suitable Green’s functions could be defined from the formulas contained to facilitate analysis of
any radiating sources by superposition. The interest in magnetodielectric substrates stems from
the expectation that new materials possessing specially tailored magnetic properties may
revolutionize the engineering of thin planar antennas. Since these materials often require
complicated constitutive equations to describe their properties rigorously, the solution of intricate
boundary value problems has become important to the understanding of the fundamental
properties of associated radiating structures.

The boundary value problem considered in this report is simplified substantially by assuming
that the magnetodielectric may be modeled as a simple material with scalar constitutive
parameters. This approximation is likely not entirely satisfactory; however, it does reduce the
problem under consideration to a well-known boundary value problem in applied
electromagnetics. Despite the extensive amount of existing literature treating this problem, no
completely self-contained treatment of the mathematical boundary value problem itself was
found. For this reason, this problem is given a full treatment to demonstrate the method of attack,
which may, in future research, be extended to treat the case of magnetic substrates described by a
more realistic set of constitutive equations.

Following Arnold Sommerfeld, we pose the boundary value problem in terms of magnetic vector
potential and proceed to solve for the unknown coefficients by applying the boundary conditions
(the complete derivation of which may be found in Appendix A). In the second section, the
electromagnetic field is calculated from the magnetic vector potential. Here, we expend some
additional effort to reduce the form of solution to an especially compact and convenient form.
These solutions may be compared for accuracy to the solutions reported in the references.
Sections 3-6 are devoted to further analysis and manipulation of the solutions to obtain results
useful in practice such as surface wave excitation, far-field radiation, directivity, radiation
resistance, and efficiency. Finally, it should be noted that a novel approach is used in the
treatment of the complex-valued square root functions in the theory of complex integration used
to derive the surface waves excited on the magnetodielectric substrate. Appendix B shows how a
conventional definition for the square roots can be given, which can be shown to provide all of
the necessary (and sufficient) properties to enable a contour to be closed in the lower half
complex plane.



2. Solution of the Boundary Value Problem

The boundary value problem is illustrated in Fig. 1.

[.10,80
z=0 > z
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z=-h 7 77 7 7 77 777777777

Fig. 1 The boundary value problem

Here we have an x-directed Hertzian dipole situated at an air-dielectric interface. The dielectric
layer has a thickness h and is backed by a perfect electric conductor (PEC) plane located at
= -h. The current density associated with the Hertzian dipole is
] =%ll,6(r) 1)

The electromagnetic field generated by this current can be represented by 2 components of
vector magnetic potential:®

A=7%A, + 24, (2)
which satisfies the homogeneous Helmholtz equation in both regions, but not at the z=0
interface:

(V2+kHA=0 3)

A general solution to Eg. 3 may be obtained for the Cartesian components of A:
Ay = J j A e kax e~ TkyY gk, dk,

N — —jkzz jkzz
A, = ae + be

(4)

k, = sz — k= k)’

The solution to the problem consists of finding the coefficients (a, b) that satisfy all the boundary
conditions. The geometry of the current problem suggests that we set

A;l = qe Jkn”Z , z>0
A, =beTnzr | z>0 (5)
A;Z = ce Tkz? 4 delkz? , —h<z<0



/TZ; = fe Tkn? 4 gelka? , —h<z<0.

In order to determine all of the unknown coefficients in Eq. 5, we require 6 boundary conditions.
The derivation of these conditions is somewhat involved. They are listed below (see Appendix A
for details).

—_—

sz z=—h 0 (6)
04,
azz |Z=—h =0 (7)
— 1 —
AZ1 z=0% — EAZZ z=0" (8)
0A,. 1 04,
9z |20t Ea—z2 | 1oo- = —Hollo ©)
A;; | z=0* — A-;;z | z=0" (10)
aAzl | B 1 aAZZ | =k Ueer—1 (11)
0z z=0" Uy &y dz 'z=0" x Uy, X1l z=0"

Using the expression for A,, in Eq. 6, we find

celkah 4 de Tk =
d = —ce?kzh, (12)

Similarly, from Eq. 7,

_jkzzfejkzzh +jkzzge—jk22h — 0
g = fe?/knh (13)

Using Egs. 12 and 13, we can return to Eq. 5 and update our expressions as follows:

A;l = qe JkzZ , z>0
A;l = be JkzZ , z>0
— . . , (14)
A, = c(e7TFn? — e?knlelkz) | —h<z<0
A, = f(eThn? 4 eMknlelkn?) | —h<z<0,
Next, we plug the updated expressions Eg. 14 into the boundary condition Eq. 9:
—jk, a— ‘u—lrc(—jkz2 — jk,,e?*z2) = —pol,. (15)
Similarly, from Eqg. 10,
a = c(1 — ekzh), (16)

Substituting Eq. 16 into Eq. 15,



. 1 )
_ij1C(1 - ezijZh) + 'u_jkzzc(l + eZJRZZh) = _HOHO
T

. . . 1 . . .
—jk,, cel¥z (e~ Tkal — glkzh) 4 M—jk22ce1kzzh(e_f"zzh + efkz2) = —p el
T

. 2 .
—2kZlce1kzzh sin(kz2 h) + ﬂ—ijZCe”‘Zzh cos(kz2 h) = —uotl,
T

2jc sin(kZZh) ejkzzh[urjkz1 + k, cot(kZZh)] = —uolyLly
We denote the bracketed expression in Eq. 17 as follows:?

DTE - ’u,rjkzl + kzz COt(kZZh)
Then,

_ —Holrlly
2jDrg sin(k,, h) e/*z2"
Substitution of Eq. 19 into Eq. 16 gives

Cc

—Holrlly 2jk,.h
= (1 — ekz
“ 2jDrg sin(kz2 h) ekz2" (1= et)

. —Uolr Ly . eijZh(e—jkzzh _ eJ'RZzh)
2jDrg sin(k, h) e/ ="
a= Hoktrllo
DTE

Next, we apply boundary condition Eq. 8, obtaining
1 .
b= M—f(l + eYkz)

and, from boundary condition Eq. 11,

1 . g —1
—ik ik e2ikzhy = j T
urerf( Jkz, + jkg,e¥ ) = jk, P

Substitution of Egs. 20 and 21 into Eq. 22 gives

—jky, b —

tr&r — 1 uoprlly

1 . 1 .
—jky, —f(1 4 e¥*") — ——f(—jk,, + jk, e *=") = jk
] Z1 Uy f( ) ﬂrerf( J Z3 ] Z3 ) JKx U &y DTE

ik, . L
fejk zh(e Jkz,h efklzh)

1 . . . 1
—jk,, — felknh(e Ikl 4 elkzh) 4 jk
T ( )+ ik HrEr

bré&r — 1 pourlly

= jk
x Ur&y DTE

prér — 1 poprlly

1 . 1 .
—2jk;,, ‘u—feszzh cos(kz,h) + 2k, u—gfef"Zzh sin(k,,h) = jk,
T Trer

—2f cos(kz h) elkzh
2 rJjk, —k, tan(k, h)| = jk
L&y [8 J Kz, 2 an( 2 )] JRx Uy &y DTE

Hr&r DTE
pr&r — 1 popyLly (23)

(17)

(18)

(19)

(20)

(21)

(22)



We denote the bracketed expression in Eq. 23 as follows:?

Dry = &rjk,, — kg, tan(k,,h) (24)
Then,
f — _UOUrflojkx(:urgr _:) . (25)
2Drg Drycos(ky, h) e/*z

Substitution of Eq. 25 into Eq. 21 gives

— i _luolurflojkx(,urgr - 1)
Hr 2Drg Drycos(k,, h) e/*z

(1 + e¥keh)

— _.uoflojkx(Urgr B 1)
2Drg Drycos(ky, h) e/*z"
h = —Iloflojkx (.urgr - 1) (26)
DTEDTM
This completes the solution for the unknown coefficients. We can now return to Eq. 14 and write

eijZh(e_ijZh + e]kZZh)

— —Holrlly

A.X' = . e_ijZZ —_ ezijZheijZZ
> 2jDrgsin(k,,h) eszzh( )

A:C’ = _“Ol'lrflo - ejkzzh(e_jkzz(z+h) —_— eijZ(Z+h))
2 2jDrg sin(kz2 h) ekz2"

i Uopr Ll sin[kz2 (z+ h)]

27
2 Dy sin(k,,h) @7
Similarly,
o _:uO:ur[IOjkx(:urgr - 1) (e_jklzz + eszZzhekazZ)
Z2 jkz h
2Drg DTMcos(kZ2 h) el "z
/T/ _ _.uoﬂrglojkx(ﬂrgr - 1) COS[kZZ (Z + h)] (28)
“2 Drg Drycos(ky, h)



Assembling all of our results, the complete solution to the boundary value problem is

AV — #0:“7‘510 e_jkzlz

- D, , z>0
- —ﬂofl(gf;éijr — Dk, 2> 0
’;ZZDTE‘lt’i‘un—r(fklzzh)sin[kZZ(z+h)] , —h<z<0
i - — oy Llojky (urer — 1) cos[k,,(z+R)] , —h<z<0 (29)

Drg DTMcos(kZ2 h)
Drg = prjky, + k,, cot(k,,h)
Dry = &rjk,, — ky, tan(k,,h)

ky, = Jkoz — k- k)

kzz = \/.urgrkoz - kxz - ky2

Note that a 2-dimensional inverse Fourier transform is required to recover the spatial dependence
of the fields. It is also worth mentioning here that Dz and D, represent the dispersion
equations for supported surface wave modes that are transverse electric (TE) and transverse
magnetic (TM), respectively, to the 2 axis. As such, our next step is to derive the z-components
of the electric and magnetic fields. Most quantities of interest can be calculated directly from
these fields.

3. Z-directed Electric and Magnetic Fields

The z-components of the electric and magnetic fields are related to the magnetic vector potential
as follows:

 jky —
HZ—Ty x
— 1 dA, 5 N (30)
E, = ke — A
z ja),ue ]kx oz +(kx +ky ) 4

The equation for the z-directed magnetic field is rather simple. Using our results from Eq. 29, we
obtain



I'_-Iv — EIO/’LT]ky e_jkzlz

, z>0
i Drg

31
__ tlojk, 31

=— sinlk M|, —h 0
2 DTEsin(kZZh)Sm[ 2, (Z+ )] <z<

Next, focusing on the z-directed electric field for z > 0, we first write

an1 _ _.uo.urflokxkzl
* oz Drg
Substitution of Eq. 32 and the expression for Elfrom Eq. 29 into Eq. 30 yields

(32)

e_jk21Z

o= Clonojky

"1 koDrgDry e_jkzlz[j('“rgr - 1)(kx2 + kyz) + ﬂrkleTM] (33)

Although it is difficult to tell, the form of Eq. 33 can actually be considerably simplified. In a
(non-obvious) step,

wrer — Dk + k%) = weer (ke + %) — (ke + k%)
(.urgr - 1)(kx2 + kyz) = .urgr(koz - k212) - (.urgrkoz - kzzz)
(,urgr - 1)(kx2 + kyz) = k222 - .urgrkzlz (34)
We substitute Eg. 34 into Eq. 33:
EZ — f’oTlo]kx e_jkzlz
koDrgDry
~ _ Clonojky
2 koDrgDry
 _ Clonojky
“ koDrgDry
 _ Clonojky
"t koDrgDry
== _flonokxkzz
“ koDrgDry
— _flonokkaZ
“ koDrgDry
= _510770kxkz2

o kODTM

[i(kz,? = urerks, ) + prkz, Do

e Jkn [k, + ok, (Dry — erjikz, )]

e~ Tkn2[jk, ? + pk,, (e,jk,, — ky, tan(key, h) — £,jk,. )]
e Jkn?|jky,,? — upky, kg, tan(kz, )]
tan(k,,h) e 7¥a1? [k, cot(k,,h) + prjks,|

tan(kZZh) e JknZ[Drp]

tan(kZZh) e Jkaz 7250 (35)




Lastly, we must find the z-directed electric field for —h < z < 0. As before, we first write

, anz —MoﬂrflojkkaZ
—Jjkx = -
0z Dy sin(k,,h)

cos[kz2 (z + h)] (36)
Substitution of Eq. 36 and the expression for /TZ;from Eq. 29 into Eq. 30 yields

(urer — 1) (kx2 + kyz) kz, (37)
Drycos(ky,h) sin(k,,h)|

E.v — _.uo.urflojkx

- os|k, (z+ h)
2 jwpotr€o&rDrg [ ” ]
As it was for E,_, we can also simplify Eq. 37 considerably:

Uk,  coslk,,(z+ h)]

2 " wegerDrgDry COS(kzzh)

[(urer — D (ki + kyy?) + Draks, cot(k,,h)]

— _ ks cos[k,,(z + h)] (% — ks ?)
2 weye DrgDry cos(k,,h) . ~ Hrérfa
+ (erjk,, — ky, tan(ky,h))k,, cot(k,,h)]
— __ —lhk, cos|k,, (z + h)]
2 wegerDrgDry COS(kZZh)
. —llgk,  coslk,,(z+ h)]
2 weyeDrgDry COS(kZZh)
=& llokyk,, cos|k,,(z + h)]
2 weyg DrgDry COS(kZZh)
__ —llyjkyk,, cos|ks,(z + h)]
2 wegDrgDry COS(kZZh)

. —llyjkyk,, cos[kzZ(z+ h)]

[ks,? — trerky, + enjky kg, cot(ky,h) — k,,°]

[rerky,” + erjky kg, cot(ky,h)]

[rk,, + jk,, cot(k,,h)]

[rjks, + ks, cot(k,, )]

2 " wegDrgDry COS(kZZh) el
- tlonojkyk,, coslk,, (z + h)]  h<z<o (38)
2 kODTM COS(kZZh)




Assembling these results, we get the following:

P flollrjky ik
ST T
__ tlyjk,
=——— —sinlk, (z+ h , —h<z<0
2 Drgsin(k,,h) LA )
(39)
— tlynok, k .
E, = —Mtan(khh)e"”‘zlz , z>0
koDry
— Clonojkyk,, cos[kz2 (z+ h)] h <
7 = — , - z<0
koDTM COS(kZzh)

As mentioned previously, in order to determine the actual spatial dependence of the electric and
magnetic fields, we must perform the inverse 2-dimensional Fourier transform of the expressions
in Eq. 39. Unfortunately, it appears to be impossible to integrate Eq. 39 in closed form. However,
far from the Hertzian dipole, we can employ the stationary phase approximation to the integrands
to obtain the far-fields. Additionally, it is also possible to extract TE and TM surface wave fields
by interpreting the integral as a contour integral in the complex k, and k, domains.

4. Far-Field Radiation

From Eq. 39, we could, for instance, write the solution for the z-directed electric field above the
substrate as

1

E,, = Wﬂb:;e‘jkx"e‘jkyydkxdky

E,,

iy 40)
1 Clonokyks, R (
- (2m)? J,[ koDrpm tan(kZZh)e Jknte~Jla* o ]kyydkxdky

The integral Eq. 40 is of a general form for which the stationary phase approximation is well
known:3

tlynojkyk,, cos@ e~ Jkor
_ HolloJxsRzyg tan (kzzsh) S (far field)|, (41)

~

Zq ~
ko Drpg

where



ky, = kg sin@ cos ¢
ky, = kosin@sin¢

k, =kycos@

1s

Zyg T ko\/,urgr — (sin 8)?

Drs, = tyjks,, + ks, cot (ky, h)

k

Dry, = &rjky, — ky,_tan (ky, h)

Similarly,
x ik
Hy, = (zn)z ff H, e /k=x e=IkyY dk, dk,
glo.ur]ky —'k —ik —ik
He, = (Zﬂ)z .I-.l— Drg G yydkxdky
and

Cloprky, cos O e=Ikor
Z1 ~ =

(far field)

Drg, 2nr

Additionally, under the stationary phase approximation,

E, =0
E,
Eg = —
o sin @
77on
E., =
¢~ sind

(42)

(43)

(44)

(45)

Therefore, a good approximation to the radiated field in the far-field in the upper hemisphere is

E. =0
[IOTIOjkakZZ C0t9 e_jkor
= > tan(k, h
6 kODTMS an( %25 ) 27T

Clognoprky, cot e~Jkor

DTES 27T

E¢=—

10

(46)



5. Surface Wave Fields

We now turn toward the derivation of the surface wave fields generated by the Hertzian dipole.
In order to do this, we must interpret our integrals as contour integrals in the complex k, and k,,

domains. For convenience, the integrals are repeated below:

1 ([ lottriky o, o
iz, = (2m)? .f.f Drg e inte It e dkydky

1 llyjk ) .
H,, = E ﬂ %y sinfk,, (z + h)| e /*«* e~TkyY 4k, dk,

2 (2m Drg sin(kz2 h) (47)
1 tlonok.k . . .
E - 1 J‘f loNojkxky, cos|k,,(z + )] oikex g=ikyY gk dle
%2 (2m)2 J koDrpy cos(kz2 h) Y
We introduce the change of variables,
k,=kicosa
k, = kssina
e (48)
X =pcos¢
y =psing
Noting that
kix + kyy = kip(cosa cos ¢ + sinasin @) = k.p cos(a — ¢) (49)

11



the integrals in Eq. 47 become

2T ©

1 Clou, jkysina . )
HZl:(Zn)Z,f f P ke Ik 5 ke da

DTE

27T o©
Clyjk: sina .
H sin[k,, (z + h)| e7Jkepcos(@=¢) k. dk da
2 (Zﬂ)z.f fDTE sin(k,,h) LA )l e
(50)

1 {’Ionokt cosak, k7 i _

21
—— 1 J‘ J‘f[onojkt cos ak,, cos|k,,(z+ h)] e~Ikepcos@®) . dk da
2 (2m)? koDry cos(k;,h)

With the aid of the following 2 mathematical identities,

2

—2mj],(kip) cosp = f cos a e Jkep cos(a—¢)
(51)

21T

_zﬂjjl(ktp) sincj) = j sina e‘jktp cos(a—¢) da

the integral expressions in Eq. 50 reduce to

ll ,u smqb .
z; = = f ]kzlzjl(ktp) ki dk,

DTE

H,, =

lly sin ¢ f ke sinlks, @+ W] 0 e

DTE Sin(kz2 h)
° (52)
_ JjtIyno cos ¢ kik,,

tan(k,,h) e /*21% ], (k. p) k. dk,

T ko2m Dry
0
ll ook k, cos|lk, (z+h
E,, =— ollo €03 4 [ . )]jl(ktp) kedk,
ko2m . Dry cos(kZZh)

12



Next, for f(k.), an odd function of k,?
o0 1 o0
| £ Geapd ket = 5 [ £ Gop) ket (59)
0 —0

Using the large argument approximation for the Hankel function®

H® , g o—jkep 54
(kep) = e’Ze (54)

Ttkep

we arrive at the approximate form of the integral expressions for the z-components of the electric
and magnetic field for large p:

Jflour Sm¢ /
H, = fDTE P o arens etk
o= 1510 sin d’ f Zkt Sm[kzz (z+ )] —Jkep k. dk
Z2 Dyg | Tp sm(kZzh) e
llonocos ¢ ; —jkz,Z 5=
o=~ DTM —ttan(i, 1) e7THerre I ki

5 _jllgnocos ¢ I 2k, cos[k,, (z + h)] S-ikep o di
2 k04’T[ DTM T[p COS(k h) t t

With the integrals put into the above form, it is possible to close an expanding semicircular

contour around the poles (zeros of Dy or D) in the lower complex k; plane. Complications
arise in the proper definition of k., :

(55)

which cannot be single-valued and continuous throughout the entire complex k; plane. The lines
across which this function is discontinuous, the branch cuts, depend on the choice of the positive

or negative root in various regions of the complex k; plane. The algebraic form of Sommerfeld’s
choice for k,_ is discussed in Appendix B and is given by

L =- /ko —kt exp[ argo(ko —ktz)] (56)

where argg(ko® — k. is the value of arg(k,” — k,*) that lies between 0 and 2. The branch
cuts and behavior of k,_for this choice are depicted in the complex k; plane in Fig. 2.
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Re(k,,) <0 Re(k,,) =0
Im(kzi) <0 [m(kzl) <0
ko
—k,
Re(k, ) =0 Re(k,,) <0
Im(k,, ) <0 Im(k,, ) <0
Branch Cut —

Fig. 2 Branch cuts and behavior of k, _for this choice in

the complex k; plane

On the real axis, just above the branch cuts, this definition reduces to the usual requirement that
waves be attenuated exponentially:

.k < kg

kzl=_j4/kt2_k02 , ke > ko

Throughout the rest of the complex plane, Eq. 56 preserves the property that Im(kzl) < 0. The
closed contour that we use is shown in Fig. 3.

"'T/ """"""""""" T
_f""‘
| __________________________ J» e — }
! r“i""-f|
| 5
| 4
i X
]
' X
]
1
1 I
\ ]
Enclosed Poles I
!
l7 1 13 '

Fig. 3 The closed contour that we use
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By the residue theorem, we have
LAL+L+1L,+Is+I+1+1g= —anz‘ res(k,) (57)

Since the semicircular arc is expanding into a proper region, Jordan’s Lemma says that this
integral will go to 0 as the radius of this arc goes to infinity:

IL+13—-0 (58)

Additionally, the integration around the branch point, I, vanishes. Therefore,

L= (s + 1) = Uy + 1) = 21 ) res(k,) (59)

where (I3 + 1) and (I, + I¢) do not vanish, since k,, is discontinuous across the branch cuts.
An asymptotic analysis of the integration around the branch cut by the method of steepest
descent gives a result for the radiated field that, under certain conditions, is in agreement with
our earlier results obtained by the method of stationary phase. Thus, Eg. 59 may be interpreted
physically as a decomposition of the field into radiated and surface wave components.

In general, the locations of the zeros of either Dy or Dy, must be found by a root-finding
algorithm on a computer. However, analysis of their expressions indicates that our contour will
capture these points in quadrant IV of the complex k, plane. Furthermore, the real part of these
zeros will be located somewhere in the interval (kg ,v/i,-€,-kq). In the limit of a lossless
substrate, u,- and ¢, are real numbers, and the zeros migrate up to the real axis of the k; plane. In
this limit, it should actually be understood that the zero is “slightly” below the real axis, so that
the formula Eq. 59 still applies. Otherwise, the formula Eq. 59 would be a discontinuous function
of the substrate properties in passing from a small amount of loss to no loss.

Using the expression for H, , the form of a TE” surface wave above the substrate is found by

calculating the residue at any zero of Dy g:
/Z_kt ~jkzy2 g=jkep
sw _ tlotrsing p e e ket

LT
e’z lim k. —k,
kt—)kp

Z1 2 Drg
i (2 . ;
Hlew _ lopy Sln(be]% ky e—jkzlze—]kppkp lim 1
2 p ke>kp Drg (k¢) — Drg(ky)
kt - kp
g sw = ot Sn¢ 2 12Ky o jiyzp-itpoy L (60)
1 2 p ? Drg (kp)
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where DTE'(kp) is the derivative of Dz with respect to k. evaluated at the pole location k,,. k,,
is also evaluated at the pole location. By the same process, we can write the expressions for the
z-components of the surface wave fields:

TEZ? Surface Wave

H W = oty sin jx |2k e—jkzlze—jkppkp';
L 2 p Drg (kp)
W _ {l, sin ¢ N 2k, sinfk,, (z + h)] STk 1
z 2 np  sin(k,,h) b DTE'(kp)
TM? Surface Wave
i{l,n, COS 2k . . 1
E, W _JtoMocosd —Ltan(k,, h) e I *nZe Pk, o, —————

g = _ tIyn, cos ¢ I 2k, cos|k,, (z + h)] T 1
g 2k, mp  cos(k,,h) P Dr (k)

(61)

6. Radiated Power, Directivity, and Efficiency

The Poynting vector describing the power flow associated with the far-field radiation is given by
the following formula:

1 1
Suvg = 5, Re(E E) = 75 (IEol? + |E,[) (62)

The expressions for Ey and E4 were given in Eq. 47. They are repeated below:
flonojkakZZS cotf e Jkor

=
kODTMS

tan (kZZSh) -

. (63)
CIonourky, cot @ e~ JkoT

Ey =

DTES 27T

Combining Egs. 62 and 63, we have
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Ky ks, cotf 2

kODTMS

Urk,y, coto

tan (kZZSh) Dry

s _ 52102770
avg — 8m2r2

) (64)

The total power radiated is found by integrating the Poynting vector over the surface of a
hemisphere of radius r:

I’ 22 [ kg ky, cOtO 2 k. cotol?
o Mo x5z Uy e co ,
— 1t k HILENE 4 B
~ 8m2r2 f f ( koDran, an( zzsh) + Drr, >r sin 6 dOd¢
2w /2 " ,
f IO Mo kyk,, cot@ -k, cot 6
82 f f ko Dran tan (kzzs ) Drr. sin 6 dOd¢

ko sin 8 cos ¢ k,, cotd 2

KoDrmn = tan (kZZSh)

1y Tlof f
rad 8772

ko sin 6 sin ¢ cot 8]°
I Ll ¢ sin 6 d0de
DTES
2m /2 2 )
1410 kocos ¢ k,, cos® pyko sin ¢ cos 6 .
Praq = 82 f j KoDru, tan (kzZS h) + Drr. sin @ dOd¢
0 0
£%1y* "% [koky, cos® 2 ko cos 67
_tlg Mo 0"z, Urko cos )
Proa = 81 j ( koDTMS tan (kzzs h)‘ + —DTES ) sin 0 do
0
2021 2 m/2 2
- f e 2 (kZZSh) + | cos? @sin@ do (65)
rad = gq koD, Drp,
0
The last integration over 6 cannot be done analytically. The directivity is
2
D(6,¢) = w (66)
Prad
Furthermore, we can define the radiation resistance in the usual way:
_ 2Prqq (67)

1,2

We would also like to calculate the power launched into any excited surface waves. If only 1
surface wave is excited, then it is feasible to use the expressions for the surface wave fields
derived in the previous section to determine the power. However, a more general procedure that
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accounts for any power launched into surface waves is used here. Consider the Poynting theorem
for lossless media:

o[ By av = §h suny-as 55 [[[ i - cimy av ©9)

If we take the real part of both sides of Eq. 68, then we obtain

1 . 69
Ptotal=#Savg-d5=—ERefﬂE-] dv (69)

In Eq. 69, we take S,,4 to be the total power flow produced by the source. Thus, Sg,,4 in Eq. 69
Is not the same S,,,4 that was used in Eq. 64 to calculate the power radiated into the upper

hemisphere. Working with Eqg. 69,
1
Putat =~ Re ||| B+ (201560605)) av
1 o0
Prtat = =5 Re || Bl g (1088 dxdy (70)

By Parseval’s theorem, Eq. 70 is equivalent to

1 (-
Peotat = —g— Re f f E.| ,_, tlodkydk, (71)

In order to use Eq. 71, we have to detour slightly to derive a convenient expression for E,,. E,,
may be found from the vector potential as follows:

— 1 [ . 04, s g 79
Ex|z=o =ja)ue l_]kx azl + (k21 +ky )Ax1 |z=0+ (72)
From Eqg. 29, we have
o Moty 1o o Jkzz
X1 D
. TE (73)
/Tzll — _lloflolkx(ﬂrfr - 1) e_ij1Z
DTEDTM
Combining Egs. 72 and 73, we have
Evl = {lyn kxzkzl(.urgr - 1) _j.ur(kzlz + kyz) (74)
¥lz=0 oo kODTEDTM kODTE

Equation 74 can be manipulated into a form more convenient for the integration that follows. We
begin by substituting Eq. 34 into Eq. 74, yielding
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2 2 2 . 2 2
Bo|,_, = thono |12 Kbz —rirke) Jualka, thy )] (75)
- (kx +ky )kODTEDTM kODTE
From the definition of D;,,, we have
erk,, = —j(Dry + ky, tan(k,,h)) (76)
Combining Egs. 75 and 76,
AN lkxzkzl [kz,” + jurks, (Dru + kg, tan(kg, )] jur(ks,” + kyz)l
*lamg = S0l (ka? + ky2)koDr Dy koDr
E~| — (I [kxzkzl [kzz2 +j.urkzlkzz tan(kzzh) +j.urkleTM] _j.ur(kzlz + kyz)l
*lz=0 0770 (kxz + kyz)kODTEDTM kODTE
— k' kg [kz,” + jurky kg, tan(k, R)]  jucky ks,
Ey | z=0 = tloMo 2 2 2 2
= (kx* + ky*)koDrgDry (kx? + ky*)koDrg
_jnur(k212 + kyz)l
kODTE
— _ kilky [k, ? + jurks, k,, tan(ky, h)] cot(k,,h) Jjurky ke,
Ey 220 — tlyng 2 2 2 2
(é{x + icy )koDrgDry cot(ky,h) (kx? + ky*)koDrg
_jlir(kzl +ky )l
kODTE
AN [kxzkzlkzz [z, cot(k,h) +jprks,] | jpklks” (s, + kyz)l
*12=0 Ono (kxz + kyz)kODTEDTM COt(kZzh) (kxz + kyz)koDTE kODTE
Fl =71 l kx2k21k22 [DTE] + j.urkxzkzlz _j.ur(kzlz + kyz)l
*1z=0 Orlo (kxz + kyz)kODTEDTM COt(kZzh) (kxz + kyz)koDTE kODTE
_ ki ky by, tan(ky,h)  juke ks, ” — jur (ke + k%) (kg 2 + Ky 2]
E, | z=0 tlono K 2 2 2 2
| O(kx +ky )DTM (kx +ky )kODTE |
_ ko ky by, tan(ky,h)  jurke ks, ” — jur (ke + k%) (ky 2 + Ky 2]
E, | z=0 tlono 2 2 2 2
| ko(ky” + ky*)Dry (kx® + ky*)koDrg |
_ kilky ko, tan(ky,h)  jur(kelky” — kilky = ky Pk, — kP, — Ky, *)
Ey | z=0 tlyno 2 2 2 2
ko(ky® + ky*)Dry (kx® + ky*)koDrg
AN ky’ky k,, tan(k,,h) ~ Jurky? (ky 2 + ke + k%)
*lz=o = S0 [0 e T+ 1, ))D (ke + K, D)keoD
o\ "x y ™ x y 0YTE

kyi’k, k,, tan(k,,h) ~ Jurks,?(ko?)
ko(ky? + k) )Dryy  (kx® + ky?)koDrg

El z=0 = tloMo l
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. [kxzkzlkZZ tan(k,,h) Jurky, kg l
o'lo

E, = _
| =0 ko(kx® + k2 )Dryy  (kx + ky?)Drg (77)
Substitution of Eq. 77 into Eq. 71 gives
Ra's Cly’no ky’k, k,, tan(k,,h) Jurk, ko g
Ptotal = 8 2 2 2 - 2 2 dkxdky ( )
s ko(kx® + ky*)Dryy (ki + ky*)Drg
We then introduce the change of variables into Eq. 78:
k, = k;cosa
o (79)
ky, = k;sina
yielding
{’210 770 [ [cos? a ko ko, tan(k,,h)  jukosin? a
Protar = f f D R k.dk.da
rd o~YTM TE
5210 Mo r kZ1k22 tan(kzzh) Jurko
Protar = Ref koDrar D, k. dk, (80)
0

In the limit of a lossless substrate, poles exist along the integration interval of Eq. 80, thus this
integral must be interpreted in terms of Cauchy principal value integrals. This is similar to what
was done earlier in the analysis of the surface wave fields. If we interpret Eq. 80 as a contour
integral along the real axis of the complex k, plane, and we adopt the same definition for k,,_,
then we may integrate along any path so long as we start and stop at the same points, since all the
functions in the integrand are analytic. Consider the contour shown in Fig. 4, where the
integration path avoids the difficulties associated with the poles by integrating around them.*

I,

Fig. 4 Alternative path of integration
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We have
Piotas = Re(Iy + I, + I3 + 1)

However, the integrand for I, is pure imaginary so long as the starting point is past v/u,-€,k, SO
that the total power can be found by numerically integrating around the box I; + I, + I5. The
difference between the total power and the radiated power is the power launched into surface
waves. We define

|PSW = Protar — Pradl (81)

Additionally, it is worth noting that integrating from 0 to & gives the power radiated into the
upper hemisphere.®> Although a proof of this fact is not known to the author, numerical
calculations were always in agreement with results obtained from Eq. 65. Lastly, we may define
a surface wave resistance and efficiency as

_ 2Praa (82)
T 102
P
Yeff = :‘:dl (83)
ota

Some numerical results obtained from the formulas in this section are included in Figs. 5-16.
Note that wavelengths on the horizontal axis are measured as wavelengths in that material, and
not in terms of free space wavelength. In all cases, a dipole whose length is 1/50 of the free
space wavelength is assumed.

For e, = 1.01; u,, = 1.01; ¢ = 4,/50
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Fig. 13 Efficiency of a horizontal infinitesimal dipole situated on a dielectric
substrate; &, = 1.01; u, = 10; £ = 4,/50
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7. Conclusion

In this report, the solution of the boundary value problem associated with dipole radiation over
grounded magnetodielectric substrates was treated. The mathematical details, which proved
difficult to find in the literature, were reproduced. The analysis of these solutions in the
subsequent sections derived the radiation field, surface wave fields, directivity, radiation
resistance, and efficiency. Some numerical results were plotted in Figs. 5-16. From this small
sampling of data, we can already conclude that the behavior of planar antennas printed on
magnetodielectric substrates is very complicated and non-intuitive. For example, Fig. 14
indicates that a very small dipole printed on a very thin substrate could easily present an input
impedance of 50 ohms at its terminals. However, despite conventional wisdom that quarter-
wavelength substrates make very effective radiators, Fig. 14 indicates that essentially all of the
available power is delivered to surface waves excited within the substrate itself, which will not
necessarily lead to desirable performance.

Furthermore, a novel treatment of the complex valued square roots was shown to produce results
in agreement with those discussed in the literature with an arguably less tortured mathematical
procedure. Appendix B can be consulted for an explanation of this approach and a derivation of
the properties of the complex valued square roots in the complex plane. This should find
application to other boundary value problems (such as the present one) for which solutions are
obtained using Fourier transforms and those that require the determination of inverse transforms
to extract useful formulas.
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Appendix A. Boundary Conditions
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The boundary conditions used in the derivation of the magnetic vector potential are developed in
this appendix. The preliminary assumption made in the analysis of the problem was that the
electromagnetic field could be modeled by 2 components of the vector magnetic potential:

A=%xA,+2ZA, (A-1)
The electromagnetic field associated with this vector potential is
1
H=-VxA
u
. (A-2)
E=—VXH
jwe
Substituting Eq. A-1 into Eq. A-2 yields
171 04, _(0A, O0A, 04,
H=— — -z
ux0y+y(az Ox) Zay]
2 2 2 2 2
_ 1 QaAZ_an_an +yaAZ+an (A-3)
Jjwue 0x0z 0z?>  0y? dydz = 0x0y
_[0%A, 0%A, 0%A,
+2 - -
dx0z 0x?  dy?
Given the general form of solution, Eg. A-3 may be reformulated as follows:
S T £ ) W W
H= p —%(jk,4,) +9 v + jk, A, | + 2(jk,Ay) (A-4)
- 1 [ [ . 04, )\ (. 04, —
E = ja)ﬂg lx <_]kxa_Z + (kz - kx )Ax> -y (] yE + kxkyAx>
04, _ ]
+2 (—jkx % 4 (k2 - kzz)Az>l (A-5)
0z
At = —h , a PEC interface requires
Z2XE=0 (A-6)
2-H=0 (A-7)
Substituting Eqg. A-4 into Eqg. A-7, we immediately obtain
A lan=0 (A8)
Then, if we apply Eq. A-6 to the  component of the electric field in Eq. A-5
04, _
<_jky aZZZ - kxkyAx2> |Z=—h =0 (A-9)
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Use of Eq. A-8 in Eq. A-9 yields the other boundary condition applicable at the PEC interface:

oz,
0z

|Z=—h =0

Now, we consider the boundary condition:
zZx(Hy—Hz) =]
In reality, there is no surface current, yet reconsider the current density:
J =xL1,6(r) = x81,6(x)5(y)6(2).

Using the integral representation of the delta functions

1 —Jjkyx
6(x)=% fe Tx*dk,
5(y) = ! ~TkyXde
(y) - % e y
we have
1 i % —jkxx p—jkyy
J =W [X£IO5(Z)]8 x>e 1Y dkxdky
We identify

J =%41,6(2) = J56(2)
and therefore
2 x (Hy — Hy) = =41,

Using Eq. A-4 in Eq. A-16 yields 2 equations:

— 1

zq |l z=0t = zy | z=0"
r

aA‘;C; . i 1 aA-;CJZ . T
97 _]kxA21 |Z=0 - ,LL_ 97 _]kxAzz |z=0 = —uotly

r

Rearranging Eq. A-18,

04y, 104,
0z W, 0z

1
) |z=0 _]kx <A21 __Azz) |Z=0 = _.Uo”o
Hr

Using Eq. A-17 in Eq. A-19, we obtain
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(A-11)

(A-12)

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)

(A-18)

(A-19)



ok 1ok,
dz z=0% f, 0z 'z=0"

= —Holly

We can obtain another boundary condition on the vector potentials from

1
z-(Hl—EHZ) | ,_,=0

which gives

Axl | z=0% — sz | z=0"

Our final boundary condition must come from
2X(E1—E2)|2=0 =O
Applying Eq. A-23 to the y component of the electric field in Eq. A-5, we find
04, — 1 04, _
<—]ky 6_21 - kxkyAx1> | 2=0 " e <_]ky a_Zz - kxkysz) | z=0 =0

Rearranging Eq. A-24,

J¥y 0z Uy &y *1 94 z=0 xfty \ Ax,g e, x2 ) | z=0 =

Substitution of Eq. A-22 into Eq. A-25 gives
o W& 1

04, 1 04,
| z=0% | z=0" Jks X1 | z=0
0z Ur&r 0z UrEr

(A-20)

(A-21)

(A-22)

(A-23)

(A-24)

(A-25)

(A-26)

In total, there are 6 unique boundary conditions applicable to the magnetic vector potential. They
have been derived in this appendix from the boundary conditions satisfied by the electric and

magnetic fields. They are repeated together as Eq. A-27.

A;c/z |z=—h =0
04,,
0z
— 1 —

z, | z=0* = _Azz |z=0_

|Z=—h =0

(A-27)
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Appendix B. Branch Cuts
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The definition of k,_ for real values of k, is

k, = [ko*—k? , k; <k

1

(B-1)
ky =—Jj ke —ko® . ke >k

In order to employ the methods of complex integration, this definition must be extended to the
whole complex k; plane. The definition we use for k,_is

k, =- “koz — kt2|exp [é argo(koz - ktz)] (B-2)

In Eq. B-2, arg,(z) is the value of arg(z) that lies in the interval (0,27x]. This is depicted
graphically as follows:

m?2

311/{1 1T/4

5nf;1 %\ﬁ/4
3u/2
From the graph, we see that arg,(z) is discontinuous if we cross the positive real axis in the z
plane. The real axis is said to form the branch cut for arg,(z) and arg,(z) is said to be a
particular branch of the multi-valued arg(z) function. Now, z = k,* — k., so that we may map
the branch cuts from the z plane to the k, plane. The real and imaginary parts of z, k,, k; are
denoted as

z=x+]jy
ko = kOT +jk0i (B'B)
ke = ke, + jike,
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Then,
x+jy = (ko * —ko,” —ke,” + ke,”) + j2(ko, ko, — ke, ky,)
The positive real axis in the z plane corresponds to the conditions
z=x+]jy
x=>0
y=0
such that the equations defining the branch cuts in the k; plane are seen to be
ko,” — ko> —ke,” + kt2 =0
ko ko, — k¢ ke, =0

T

The second of these equations defines a hyperbola in the k; plane:
_ korkoi

t. =
T kti

(B-4)

(B-5)

(B-6)

(B-7)

Since ko, must be a negative number to give attenuation, this hyperbola will appear as shown:

From Eg. B-6, the real part must be greater than 0. The endpoint of our hyperbolic curves must
occur where z = 0. This corresponds to the points k, = +k,. Our branch cuts are as follows:

’kﬁ

ko
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In the limit of no loss, k,, — 0. Equation B-7 indicates that in this limit, the hyperbola will
shrink inward to the coordinate axes. The governing equations for the branch cut reduce to

ko, — ke P+ ke2 >0
ktrkti = O

(B-8)

These equations admit 2 solutions. That is,

k; =0 (the imaginary axis)
(B-9)
kt,: = 0;

k.| <lkol (the line segment on the real axis from — kg to + ko)

This is consistent with the physical picture of hyperbolas collapsing inward toward the
coordinate axes. The branch cuts are depicted as follows:

ko

_ku

Branch Cut —

In view of Eq. B-1, and in order to obtain convergent integrals, we insist that Im(kzl) < 0.We
must verify that definition Eq. B-2 satisfies this requirement. In quadrant 1, we know that k, >
0 and k;, > 0. So that,

zZ =X +]y = (korz - ktrz + ktiz) _jZktrkti

(B-10)
y<0
Thus, in quadrant 1, we have
1 -
% < Eargo(ko2 — k) <m (B-11)
and
Re {exp [% argo(ko2 - ktz)]} <0
(B-12)

Im {exp [% arg, (k02 - ktz)]} =0
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In view of Eq. B-2 and Eg. B-12, we can conclude that within quadrant 1, the following

inequalities hold:

This analysis can be repeated for quadrants 2, 3, 4. The topology for k, is summarized as

follows:

Re(k,,) =0
Im(k,,) <0

Re(k,, ) <0 Re(k, ) =0
ko
—ky
Re(k, ) =0 Re(k,,) <0
Im(k,,) <0 Im(k,,) <0
Branch Cut —
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